Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Integrating SOTIF and Agile Systems Engineering

2019-04-02
2019-01-0141
Autonomous vehicles and advanced driver assistance systems have functionality realized across numerous distributed systems that interact with a dynamic cyber-physical environment. This complexity raises the potential for emergent behaviours which are not intended for the system’s operational use. The need to analyze the intended functionality of these emergent behaviours for potential hazards, which may occur in absence of faults, are aspects of the ISO PAS 21448, Safety of the Intended Functionality (SOTIF) [1]. The Safety of the Intended Functionality or SOTIF is a framework for developing systems which are free from unreasonable risk due to the intended functionality or performance limitations of a system which is free from faults. This is meant to complement Functional Safety which is covered in ISO 26262 [2]. The major focus of SOTIF is to aid in the functional development of a system.
Technical Paper

Research on the Driving Stability Control System of the Dual-Motor Drive Electric Vehicle

2019-04-02
2019-01-0436
In order to improve the steering stability of the dual-motor drive electric vehicle, Taking the yaw rate and the sideslip angle as the control variables, Using the improved two degree of freedom linear dynamic model and seven degree of freedom nonlinear vehicle dynamics model, The hierarchical structure is used to establish the dual-motor drive electric vehicle steering stability control strategy which consist of the upper direct yaw moment decision-making layer based on the sliding mode controller and the lower additional yaw moment distribution layer based on the optimization theory. The Matlab/Simulink-Carsim joint simulation platform was built. The control strategy proposed in this paper was simulated and verified under the snake test condition and double-line shift test condition.
Technical Paper

Survey of Automotive Privacy Regulations and Privacy-Related Attacks

2019-04-02
2019-01-0479
Privacy has been a rising concern. The European Union has established a privacy standard called General Data Protection Regulation (GDPR) in May 2018. Furthermore, the Facebook-Cambridge Analytica data incident made headlines in March 2018. Data collection from vehicles by OEM platforms is increasingly popular and may offer OEMs new business models but it comes with the risk of privacy leakages. Vehicular sensor data shared with third-parties can lead to misuse of the requested data for other purposes than stated/intended. There exists a relevant regulation document introduced by the Alliance of Automobile Manufacturers (“Auto Alliance”), which classifies the vehicular sensors used for data collection as covered and non-sensitive parameters.
Technical Paper

A Semi-Cooperative Social Routing System to Reduce Traffic Congestion

2019-04-02
2019-01-0497
One of the ways to reduce city congestion is to balance the traffic flow on the road network and maximally utilize all road capacities. There are examples showing that, if the drivers are not competitive but cooperative, the road network usage efficiency and the traffic conditions can be improved. This motivates the idea of designing a cooperative routing algorithm to benefit most vehicles on the road. This paper presents a semi-cooperative social routing algorithm for large transportation network with predictive traffic density information. The goal is to integrate a cooperative scheme into the individual routing and achieve short traveling time not only for the traveler itself, but also for all vehicles in the road network. The most important concept of this algorithm is that the route is generated with the awareness of the total travel time added to all other vehicles on the road due to the increased congestion.
Technical Paper

Automatic Speech Recognition System Considerations for the Autonomous Vehicle

2019-04-02
2019-01-0861
As automakers begin to design the autonomous vehicle (AV) for the first time, they must reconsider customer interaction with the Automatic Speech Recognition (ASR) system carried over from the traditional vehicle. Within an AV, the voice-to-ASR system needs to be capable of serving a customer located in any seat of the car. These shifts in focus require changes to the microphone selection and placement to serve the entire vehicle. Further complicating the scenario are new sources of noise that are specific to the AV that enable autonomous operation. Hardware mounted on the roof that are used to support cameras and LIDAR sensors, and mechanisms meant to keep that hardware clean and functioning, add even further noise contamination that can pollute the voice interaction. In this paper, we discuss the ramifications of picking up the intended customer’s voice when they are no longer bound to the traditional front left “driver’s” seat.
Technical Paper

Thermal Comfort Simulation for Manufacturing Plants

2019-04-02
2019-01-0899
Manufacturing processes often produce a large amount of heat, which needs to be pumped out of the factory to maintain thermal stability and comfort. Thermal comfort is essential to maintain a suitable working environment in a factory. It has a strong impact on the health and productivity of workers. In addition, it is mandatory to keep the working environment within specified thermal and relative humidity ranges. Periodic assessments of these thermal parameters is routine in most factories. Inclusion of additional manufacturing equipment or processes can lead to a significant change in the working environment and consequent comfort, this needs to be addressed quickly. Rather than wait to measure these effects it is preferable to develop a reliable simulation method for the proactive study and improvement of thermal comfort levels. A reliable simulation approach is developed in this study for the prediction of thermal comfort in an automotive manufacturing plant.
Technical Paper

Security in Wireless Powertrain Networking through Machine Learning Localization

2019-04-02
2019-01-1046
This paper demonstrates a solution to the security problem for automotive wireless powertrain networking. That is, the security for wireless automotive networking requires a localization function before we allow a node to join the network. We explain why for powertrain wireless networking, this ability of identifying the precise location of a communicating wireless node is critical. In this paper, we explore existing methods that others have used to implement localization for wireless networking. Then, we apply machine-learning techniques to a dataset that has localization information associated with received signal strength indication. We reveal insights provided by our dataset though an exploration with statistics and visualization. We then present our problem in terms of pattern recognition via multiple techniques, including Naïve Bayes Classifier and Artificial Neural Networks.
Technical Paper

Wheel Power in Urban and Extra-Urban Driving for xEV Design

2019-04-02
2019-01-1080
Electrified powertrains respond to driver demand for vehicle acceleration by producing power through either the electric drive system or an on-board combustion engine or both. In Plug-In Hybrid Vehicles (PHEVs), the powertrain provides the purest form of transportation when responding to driver demand through the electric drive system. We develop a method to size the electric drive system in PHEVs to provide zero emission driving in densely populated urban regions. We use real world data from Europe and calculate instantaneous wheel power during trips. Ray tracing is used to identify the regions where trips occur and the population density of these regions is obtained from an open source dataset published by Eurostat. Regions are categorized by their population density into urban and extra-urban regions. Real world data from these regions is analyzed to determine the wheel power required in urban and extra-urban settings.
Technical Paper

Machine Learning with Decision Trees and Multi-Armed Bandits: An Interactive Vehicle Recommender System

2019-04-02
2019-01-1079
Recommender systems guide a user to useful objects in a large space of possible options in a personalized way. In this paper, we study recommender systems for vehicles. Compared to previous research on recommender systems in other domains (e.g., movies or music), there are two major challenges associated with recommending vehicles. First, typical customers purchase fewer cars than movies or pieces of music. Thus, it is difficult to obtain rich information about a customer’s vehicle purchase history. Second, content information obtained about a customer (e.g., demographics, vehicle preferences, etc.) is also difficult to acquire during a relatively short stay in a dealership. To address these two challenges, we propose an interactive vehicle recommender system based a novel machine learning method that integrates decision trees and multi-armed bandits. Decision tree learning effectively selects important questions to ask the customer and encodes the customer's key preferences.
Technical Paper

Evaluation of Different ADAS Features in Vehicle Displays

2019-04-02
2019-01-1006
The current study presents the results of an experiment on driver performance including reaction time, eye-attention movement, mental workload, and subjective preference when different features of Advanced Driver Assistance Systems (ADAS) warnings (Forward Collision Warning) are displayed, including different locations (HDD (Head-Down Display) vs HUD (Head-Up Display)), modality of warning (text vs. pictographic), and a new concept that provides a dynamic bird’s eye view for warnings. Sixteen drivers drove a high-fidelity driving simulator integrated with display prototypes of the features. Independent variables were displayed as modality, location, and dynamics of the warnings with driver performance as the dependent variable including driver reaction time to the warning, EORT (Eyes-Off-Road-Time) during braking after receiving the warning, workload and subject preference.
Technical Paper

A Novel Approach for Validating Adaptive Cruise Control (ACC) Using Two Hardware-in-the-Loop (HIL) Simulation Benches

2019-04-02
2019-01-1038
Adaptive Cruise Control (ACC) is becoming a common feature in modern day vehicles with the advancement of Advanced Driver Assist Systems (ADAS). Simultaneously, Hardware-in-the-Loop (HIL) simulation has emerged as a major component of the automotive product development cycle as it can accelerate product development and validation by supplementing in-vehicle testing. Specifically, HIL simulation has become an integral part of the controls development and validation V-cycles by enabling rapid prototyping of control software for Electronic Control Units (ECUs). Traditionally, ACC algorithms have been validated on a system or subsystem HIL bench with the ACC ECU in the loop such that the HIL bench acts as the host or trailing vehicle with the target or preceding vehicle usually simulated using as an object that follows a pre-defined motion profile.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 2: Integration of Machine Learning Vehicle Velocity Prediction with Optimal Energy Management to Improve Fuel Economy

2019-04-02
2019-01-1212
An optimal energy management strategy (Optimal EMS) can yield significant fuel economy (FE) improvements without vehicle velocity modifications. Thus it has been the subject of numerous research studies spanning decades. One of the most challenging aspects of an Optimal EMS is that FE gains are typically directly related to high fidelity predictions of future vehicle operation. In this research, a comprehensive dataset is exploited which includes internal data (CAN bus) and external data (radar information and V2V) gathered over numerous instances of two highway drive cycles and one urban/highway mixed drive cycle. This dataset is used to derive a prediction model for vehicle velocity for the next 10 seconds, which is a range which has a significant FE improvement potential. This achieved 10 second vehicle velocity prediction is then compared to perfect full drive cycle prediction, perfect 10 second prediction.
Technical Paper

Vehicle Velocity Prediction and Energy Management Strategy Part 1: Deterministic and Stochastic Vehicle Velocity Prediction Using Machine Learning

2019-04-02
2019-01-1051
There is a pressing need to develop accurate and robust approaches for predicting vehicle speed to enhance fuel economy/energy efficiency, drivability and safety of automotive vehicles. This paper details outcomes of research into various methods for the prediction of vehicle velocity. The focus is on short-term predictions over 1 to 10 second prediction horizon. Such short-term predictions can be integrated into a hybrid electric vehicle energy management strategy and have the potential to improve HEV energy efficiency. Several deterministic and stochastic models are considered in this paper for prediction of future vehicle velocity. Deterministic models include an Auto-Regressive Moving Average (ARMA) model, a Nonlinear Auto-Regressive with eXternal input (NARX) shallow neural network and a Long Short-Term Memory (LSTM) deep neural network. Stochastic models include a Markov Chain (MC) model and a Conditional Linear Gaussian (CLG) model.
Technical Paper

Evaluation of Low Mileage GPF Filtration and Regeneration as Influenced by Soot Morphology, Reactivity, and GPF Loading

2019-04-02
2019-01-0975
As European and Chinese tailpipe emission regulations for gasoline light-duty vehicles impose particulate number limits, automotive manufacturers have begun equipping some vehicles with a gasoline particulate filter (GPF). Increased understanding of how soot morphology, reactivity, and GPF loading affect GPF filtration and regeneration characteristics is necessary for advancing GPF performance. This study investigates the impacts of morphology, reactivity, and filter soot loading on GPF filtration and regeneration. Soot morphology and reactivity are varied through changes in fuel injection parameters, known to affect soot formation conditions. Changes in morphology and reactivity are confirmed through analysis using a transmission electron microscope (TEM) and a thermogravimetric analyzer (TGA) respectively.
Technical Paper

Study of Optimization Strategy for Vehicle Restraint System Design

2019-04-02
2019-01-1072
Vehicle restraint systems are optimized to maximize occupant safety and achieve high safety ratings. The optimization formulation often involves the inclusion or exclusion of restraint features as discrete design variables, as well as continuous restraint design variables such as airbag firing time, airbag vent size, inflator power level, etc. The optimization problem is constrained by injury criteria such as Head Injury Criterion (HIC), chest deflection, chest acceleration, neck tension/compression, etc., which ensures the vehicle meets or exceeds all Federal Motor Vehicle Safety Standard (FMVSS) requirements. Typically, Genetic Algorithms (GA) optimizations are applied because of their capability to handle discrete and continuous variables simultaneously and their ability to jump out of regions with multiple local optima, particularly for this type of highly non-linear problems.
Journal Article

Closed-Form Structural Stress Solutions for Spot Welds in Square Plates under Central Bending Conditions

2019-04-02
2019-01-1114
A new closed-form structural stress solution for a spot weld in a square thin plate under central bending conditions is derived based on the thin plate theory. The spot weld is treated as a rigid inclusion and the plate is treated as a thin plate. The boundary conditions follow those of the published solution for a rigid inclusion in a square plate under counter bending conditions. The new closed-form solution indicates that structural stress solution near the rigid inclusion on the surface of the plate along the symmetry plane is larger than those for a rigid inclusion in an infinite plate and a finite circular plate with pinned and clamped outer boundaries under central bending conditions. When the radius distance becomes large and approaches to the outer boundary, the new analytical stress solution approaches to the reference stress whereas the other analytical solutions do not.
Journal Article

Analyzing and Preventing Data Privacy Leakage in Connected Vehicle Services

2019-04-02
2019-01-0478
The rapid development of connected and automated vehicle technologies together with cloud-based mobility services are revolutionizing the transportation industry. As a result, huge amounts of data are being generated, collected, and utilized, hence providing tremendous business opportunities. However, this big data poses serious challenges mainly in terms of data privacy. The risks of privacy leakage are amplified by the information sharing nature of emerging mobility services and the recent advances in data analytics. In this paper, we provide an overview of the connected vehicle landscape and point out potential privacy threats. We demonstrate two of the risks, namely additional individual information inference and user de-anonymization, through concrete attack designs. We also propose corresponding countermeasures to defend against such privacy attacks. We evaluate the feasibility of such attacks and our defense strategies using real world vehicular data.
Technical Paper

A Fault Tolerant Time Interval Process for Functional Safety Development

2019-04-02
2019-01-0110
During development of complex automotive technologies, a significant engineering effort is often dedicated to ensuring the safe performance of these systems. An important aspect to consider when assessing the viability of different safety designs or strategies is the time period from the occurrence of a fault to the violation of a Safety Goal (SG). This time period is commonly referred to as the Fault Tolerant Time Interval (FTTI). In Automotive Safety, ISO 26262 [1] calls for the identification and appropriate partitioning of the FTTI, however very little guidance is provided on how to do this. This paper presents a process, covering the entire safety development lifecycle, for the identification of timing constraints and the development of associated requirements necessary to prevent Safety Goal violations.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Journal Article

Charger Sizing for Long-Range Battery Electric Vehicles

2018-04-03
2018-01-0427
The falling cost of lithium ion batteries combined with an ongoing need to reduce greenhouse gas emissions is driving the proliferation of affordable long-range battery electric vehicles (BEVs). However, an inherent challenge with longer-range BEVs is the increased time required to fully charge the battery using standard 120/240 V AC power outlets. One approach to address this issue involves moving to higher power onboard AC chargers; however, household and utility wiring may not allow for the full capability of these higher power chargers. This study explores the typical time available for vehicle charging during an overnight stop based on real-world customer “MyFord Mobile” (MFM) data collected from Ford electrified vehicles. Through this approach, the available overnight time for recharging and required energy to be added to the battery are evaluated under the influence of typical daily driving distances, extreme ambient temperatures, and value charging time windows.
X